ANTI-INFLAMMATION

Clinical Studies

TITLE: “Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial”

SOURCE: Perlee D, van Vught LA, Scicluna BP, Maag A, Lutter R, Kemper EM, van 't Veer C, Punchard MA, González J, Richard MP, Dalemans W, Lombardo E, de Vos AF, van der Poll T. Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial. Stem Cells. 2018 Nov;36(11):1778-1788.

SUMMARY: In experimental models, mesenchymal stem cells (MSCs) can modulate various immune responses implicated in the pathogenesis of sepsis. Intravenous injection of lipopolysaccharide (LPS) into healthy subjects represents a model with relevance for the host response to sepsis. To explore the use of MSCs in sepsis, we determined their effect on the response to intravenous LPS in a randomized study in 32 healthy subjects with four treatment arms: placebo or allogeneic adipose MSCs (ASCs) intravenously at either 0.25 × 106 , 1 × 106 , or 4 × 106 cells/kg; all subjects received LPS intravenously (2 ng/kg) one hour after the end of ASC infusion (Trial Register number 2014-002537-63, clinicaltrials.gov identifier NCT02328612). Infusion of ASCs was well tolerated. The high ASC dose increased the febrile response, exerted mixed pro-inflammatory (enhanced interleukin-8 and nucleosome release) and anti-inflammatory effects (increased interleukin-10 and transforming growth factor-β release), and enhanced coagulation activation and reduced the fibrinolytic response. Blood leukocyte transcriptome analyses showed a biphasic effect of ASCs on the LPS response: at 2 hours post LPS, ASC-infused subjects displayed higher expression of genes involved in innate immune pathways, whereas at 4 hours post LPS these subjects had lower expression of innate immune pathway genes. Infusion of ASCs did not modify the "ex vivo" responsiveness of whole blood to various bacterial agonists. These results indicate that intravenous infusion of allogeneic ASCs (4 × 106 cells/kg) has a variety of proinflammatory, anti-inflammatory, and procoagulant effects during human endotoxemia. Further studies are needed to assess the safety and efficacy of ASCs in sepsis patients.

PUBLIC DOWNLOAD OF FULL MANUSCRIPT: Not available for public download


Preclinical Studies

TITLE: “Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model”

SOURCE: Bouglé A, Rocheteau P, Hivelin M, Haroche A, Briand D, Tremolada C, Mantz J, Chrétien F. Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model. Br J Anaesth. 2018 Dec;121(6):1249-1259.

SUMMARY: Severe sepsis has a high mortality rate. There is increasing evidence that human mesenchymal stem cells possess immunomodulatory properties in sepsis, particularly those from adipose tissue. We hypothesised that micro-fragmented human fat, obtained with minimal alteration of the stromal vascular niche, attenuates the inflammatory response and improves outcome in a murine model of sepsis. Micro-fragmented fat, lipoaspirate, or saline was administered intraperitoneally 2 h after caecal ligation and puncture (CLP) in C57Bl/6RJ ketamine-xylazine anaesthetised mice. The primary endpoint was the inflammatory score. Secondary endpoints included survival, physiological, histological, and biological parameters. In CLP mice, micro-fragmented fat administration significantly decreased the median (range) inflammatory score compared with saline [17 (14-20) vs 9 (8-12), P=0.006]. Secondary endpoints were also significantly improved in micro-fragmented fat-treated compared with saline-treated CLP mice. Improvement in inflammatory score and in survival was suppressed when micro-fragmented fat was co-administered with liposomes loaded with clodronate (macrophage toxin) or NS-398 (cyclo-oxygenase 2 inhibitor), but not with SC-560 (cyclo-oxygenase 1 inhibitor). In a murine model of severe sepsis, micro-fragmented fat improved early inflammatory status and outcome, at least in part, by a cyclo-oxygenase-2-mediated mechanism. The potential therapeutic value of micro-fragmented fat in severe sepsis warrants further investigation.

PUBLIC DOWNLOAD OF FULL MANUSCRIPT: Not available for public download


TITLE: “Adipose-derived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome”

SOURCE: Chang CL, Sung PH, Chen KH, Shao PL, Yang CC, Cheng BC, Lin KC, Chen CH, Chai HT, Chang HW, Yip HK, Chen HH. Adipose-derived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome. Am J Transl Res. 2018 Apr 15;10(4):1053-1070.

SUMMARY: This study tested the hypothesis that healthy adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes (HMSCEXO) and apoptotic (A) (induced by 12 h hypoxia/12 h starvation)-ADMSC-derived exosomes (AMSCEXO) were comparably effective at alleviating sepsis syndrome [SS; induced by cecal-ligation and puncture (CLP)]-induced systemic inflammation and reduced organ damage and unfavorable outcomes in rats. SD rats were divided into sham control (SC), SS only, SS + HMSCEXO (100 µg intravenous administration 3 h after CLP), and AMSCEXO. By day 5 after CLP procedure, the mortality rate was significantly higher in SS than in SC and HMSCEXO (all P < 0.01), but it showed no significant different between SC and HMSCEXO, between AMSCEXO and HMSCEXO or between SS and AMSCEXO (P > 0.05). The levels of inflammatory mediators in circulation (CD11b/c/Ly6G/MIF), bronchioalveolar lavage (CD11b/c/Ly6G) and abdominal ascites (CD11b/c/CD14/Ly6G/MIF) were highest in SS, lowest in SC and significantly higher in AMSCEXO than in HMSCEXO (all P < 0.001). The circulating/splenic levels of immune cells (CD34+/CD4+/CD3+/CD8+) were expressed in an identical pattern whereas the T-reg+ cells exhibited an opposite pattern of inflammation among the groups (all P < 0.001). The protein expressions of inflammation (MMP-9/MIF/TNF-α/NF-κB/IL-1β) and oxidative stress (NOX-1/NOX-2/oxidized protein), and cellular expressions (CD14+/CD68+) in lung/kidney parenchyma exhibited an identical pattern of inflammatory mediators (all P < 0.001). The kidney/lung injury scores displayed an identical pattern of inflammatory mediators among the groups (all P < 0.001). In conclusion, HMSCEXO might be superior to AMSCEXO for improving survival and suppressing the inflammatory reactions in rats after SS.

PUBLIC DOWNLOAD OF FULL MANUSCRIPT: Chang 2018 PDF


TITLE: “Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis”

SOURCE: Ou H, Zhao S, Peng Y, Xiao X, Wang Q, Liu H, Xiao X, Yang M. Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis. Mol Med Rep. 2016 Oct;14(4):3862-70.

SUMMARY: Mesenchymal stem cells (MSCs) have been reported to regulate the systemic inflammatory response and sepsis-induced immunologic injury pre-clinically. However, whether MSCs from different sources elicit identical effects remains to be elucidated. The present study compared the effect of bone marrow‑derived MSCs (BMSCs) and adipose tissue-derived MSCs (ADMSCs) in a murine model of lipopolysaccharide (LPS)‑induced sepsis. SPF BALB/c mice were induced with an injection of LPS (10 mg/kg; 1 mg/ml) via the tail vein. To compare the effect of MSCs on the septic mice, either saline, BMSCs or ADMSCs were injected via the tail vein 5 min following the administration of LPS. The survival rates and body temperatures of the mice were observed regularly up to 48 h. The serum levels of pro‑inflammatory cytokines, including tumour necrosis factor‑α, interleukin (IL)‑6 and IL‑8, anti‑inflammatory cytokines, including IL‑2, IL‑4 and IL‑10, and biochemical markers, including lactate, creatinine, alanine aminotransferase and aspertate aminotransferase, were analyzed at 6 h. The BMSCs and ADMSCs significantly reduced mortality rates, body‑temperature fluctuations, serum levels of biochemical markers and the majority of cytokines. However, the levels of IL‑8 in the BMSC and ADMSC groups were increased and decreased, respectively. These findings suggested that BMSCs and ADMSCs ameliorated sepsis-associated organ injury and mortality, and had a similar regulatory effect on pro‑ and anti‑inflammatory cytokines despite the different MSC sources. Therefore, BMSCs and ADMSCs may serve as novel treatment modalities for sepsis.

PUBLIC DOWNLOAD OF FULL MANUSCRIPT: Ou 2016 PDF


TITLE: “Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Staphylococcal Enterotoxin A-Induced Toxic Shock”

SOURCE: Asano K, Yoshimura S, Nakane A. Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Staphylococcal Enterotoxin A-Induced Toxic Shock. Infect Immun. 2015 Sep;83(9):3490-6.

SUMMARY: Adipose tissue-derived stem cells (ASCs), which are mesenchymal stromal cells isolated from adipose tissues, exhibit immunomodulatory effects that are promising for several applications, including the therapeutics of inflammatory diseases. In the present study, the effect of ASCs on bacterial toxin-induced inflammation was investigated. Intraperitoneal administration of ASCs rescued mice from lethal shock induced by staphylococcal enterotoxin A (SEA) potentiated with lipopolysaccharide. In the sera and/or spleens of mice administered ASCs, the production of proinflammatory cytokines, including interferon gamma, tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-2 was reduced. By quantitative real-time PCR, the expression of Foxp3 in the mice administered ASCs was not altered. On the other hand, the expression of IL-12 receptor and STAT4 was decreased with ASC administration. These results imply that the effect of ASCs is not involved in the lineage of regulatory T cells but that these cells may modulate TH1 differentiation. This information provides evidence that ASCs have properties that are effective to attenuate SEA-induced toxic shock and should prompt further exploration on other inflammatory diseases caused by bacterial toxins or bacterial infections.

PUBLIC DOWNLOAD OF FULL MANUSCRIPT: Asano 2015 PDF


TITLE: “A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation”

SOURCE: Elman JS, Li M, Wang F, Gimble JM, Parekkadan B. A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J Inflamm (Lond). 2014 Jan 7;11(1):1.

SUMMARY: Bone marrow-derived mesenchymal stromal cells (BMSCs) are a cell population of intense exploration for therapeutic use in inflammatory diseases. Secreted factors released by BMSCs are responsible for the resolution of inflammation in several pre-clinical models. New studies have uncovered that adipose tissue also serves as a reservoir of multipotent, non-hematopoietic stem cells, termed adipose-derived stromal/stem cells (ASCs), with many common characteristics to BMSCs. We hypothesized that ASC and BMSC secreted factors would lead to a comparable benefit in the context of generalized inflammation. Proteomic profiling of conditioned media revealed that BMSCs express significantly higher levels of sVEGFR1 and sTNFR1, two soluble cytokine receptors with known therapeutic activity in sepsis. In a prophylactic study of endotoxin-induced inflammation in mice, we observed that BMSC secreted factors provided a greater survival benefit and tissue protection of endotoxemic mice compared to ASCs. Neutralization of sVEGFR1 and sTNFR1 did not significantly affect the survival benefit experienced by mice treated with BMSC secreted factors. Our findings suggest that BMSCs may be more effective as a cell therapeutic for use in endotoxic shock and that ASCs may be positioned for continued exploration in immunomodulatory diseases. Soluble cytokine receptors can distinguish stromal cells from different tissue origins, though they may not be the sole contributors to the therapeutic benefit of BMSCs. Furthermore, other secreted factors not discussed in this study may also differentiate these stromal cell populations from one another.

PUBLIC DOWNLOAD OF FULL MANUSCRIPT: Elman 2014 PDF